
Package: stocks (via r-universe)
October 25, 2024

Type Package

Title Stock Market Analysis

Version 2.0.0

License GPL-3

LazyData true

URL https://github.com/vandomed/stocks

Date 2020-07-14

Author Dane R. Van Domelen

Maintainer Dane R. Van Domelen <vandomed@gmail.com>

Description Functions for analyzing and visualizing stock market data.
Main features are loading and aligning historical data,
calculating performance metrics for individual funds or
portfolios (e.g. annualized growth, maximum drawdown,
Sharpe/Sortino ratio), and creating graphs.

Depends dplyr, R (>= 3.5.0), rbenchmark, quantmod

Imports data.table, fastmatch, ggplot2, ggrepel, graphics, grDevices,
lubridate, methods, plotly, purrr, Rcpp (>= 0.12.15),
RcppEigen, roll, rvest, scales, stats, tidyr, TTR, xml2, zoo

Suggests knitr, rmarkdown, pander, printr

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.1.0

Repository https://vandomed.r-universe.dev

RemoteUrl https://github.com/vandomed/stocks

RemoteRef HEAD

RemoteSha 03244f454ad44f3485263b8267b0ddd6c035f90b

1

https://github.com/vandomed/stocks

2 Contents

Contents
beta_trailing50 . 3
calc_metric . 4
calc_metrics . 5
calc_metrics_123 . 6
calc_metrics_2funds . 7
calc_metrics_3funds . 8
calc_metrics_overtime . 10
contango_hedged . 11
contango_simple . 13
convert_gain . 14
cum_metric . 15
daily_yearly . 16
diffs . 16
fang . 17
gains_prices . 17
gains_rate . 18
get_sp500_tickers . 19
highyield_etfs . 20
label_metric . 20
largest_etfs . 20
load_gains . 21
load_prices . 22
mdd . 24
metric_choices . 25
metric_decimals . 25
metric_info . 25
metric_label . 26
metric_title . 26
metric_units . 27
moving_mean . 27
pchanges . 28
pdiffs . 29
plot_gains . 29
plot_growth . 31
plot_metrics . 32
plot_metrics_123 . 34
plot_metrics_2funds . 36
plot_metrics_3funds . 38
plot_metrics_overtime . 39
prices_gains . 42
prices_rate . 43
ratios . 44
rolling_metric . 45
rrr . 45
sector_spdr_etfs . 46
sharpe . 46

beta_trailing50 3

sortino . 47
sp500_dates . 48
stocks . 48
targetall . 49
targetbeta_twofunds . 50
ticker_dates . 53
title_metric . 53
vanguard_etfs . 54
vanguard_funds . 54
vanguard_products . 54

Index 55

beta_trailing50 Calculate Beta Using Last 50 Daily Gains

Description

Calculates beta for a ticker symbol based on the previous 50 daily gains.

Usage

beta_trailing50(ticker, benchmark = "SPY", ...)

Arguments

ticker Character string with ticker symbol that Yahoo! Finance recognizes.

benchmark Character string specifying which fund to use as benchmark.

... Arguments to pass to load_gains.

Value

Numeric value.

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

Examples

Not run:
Calculate TLT's beta based on the previous 50 daily gains
beta_trailing50("TLT")

End(Not run)

https://CRAN.R-project.org/package=quantmod

4 calc_metric

calc_metric Calculate Performance Metric

Description

Mainly a helper function for calc_metrics and calc_metrics_overtime, but could also be used
independently.

Usage

calc_metric(gains, metric = "mean", units.year = 252, benchmark.gains = NULL)

Arguments

gains Numeric vector.
metric Character string specifying metric to calculate. Choices are "mean", "sd",

"growth.x" for growth of $x where x is the initial value, "growth" for per-
cent growth, "cagr" for compound annualized growth rate, "mdd" for max
drawdown, "sharpe", "sortino", "alpha", "alpha.annualized", "beta",
"r.squared", "pearson" or "spearman" for Pearson/Spearman correlation with
benchmark, and "auto.pearson" or "auto.spearman" for Pearson/Spearman
autocorrelation.

units.year Integer value.
benchmark.gains

Numeric vector.

Value

Numeric value.

Examples

Not run:
Load daily gains for SPY in 2019 and calculate various metrics
gains <- load_gains(tickers = "SPY", from = "2019-01-01", to = "2019-12-31")
calc_metric(gains$SPY, "growth")
calc_metric(gains$SPY, "cagr")
calc_metric(gains$SPY, "mdd")
calc_metric(gains$SPY, "sharpe")
calc_metric(gains$SPY, "growth.10k")

Calculate alpha and beta for TLT in 2019, using SPY as a benchmark
gains <- load_gains(tickers = c("SPY", "TLT"), from = "2019-01-01", to = "2019-12-31")
calc_metric(gains = gains$TLT, metric = "alpha", benchmark.gains = gains$SPY)
calc_metric(gains = gains$TLT, metric = "beta", benchmark.gains = gains$SPY)

End(Not run)

calc_metrics 5

calc_metrics Calculate Performance Metrics

Description

Useful for comparing funds on one or more metrics.

Usage

calc_metrics(
gains = NULL,
metrics = c("cagr", "mdd", "mean", "sd", "sharpe", "alpha.annualized", "beta", "r"),
prices = NULL,
tickers = NULL,
...,
benchmark = "SPY"

)

Arguments

gains Data frame with one column of gains for each investment and a date variable
named Date.

metrics Character vector specifying metrics to calculate. Choices are "cagr" for com-
pound annualized growth rate, "mdd" for max drawdown, "mean", "sd", "sharpe",
"growth.x" for growth of $x where x is the initial value, "growth" for percent
growth, "sortino", "alpha", "alpha.annualized", "beta", "r.squared",
"pearson" or "spearman" for Pearson/Spearman correlation with benchmark,
and "auto.pearson" or "auto.spearman" for Pearson/Spearman autocorrela-
tion.

prices Data frame with one column of prices for each investment and a date variable
named Date.

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, if you want
to download data on the fly.

... Arguments to pass along with tickers to load_gains.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

Value

Data frame with performance metrics for each investment.

Examples

Not run:
Calculate performance metrics for FANG stocks since the beginning of 2019
calc_metrics(tickers = fang, from = "2019-01-01")

6 calc_metrics_123

Repeat, but use step-by-step approach with piping (need SPY to calculate
alpha and beta)
c("SPY", fang) %>%

load_gains(from = "2019-01-01") %>%
calc_metrics()

End(Not run)

calc_metrics_123 Calculate Performance Metrics for Any Combination of Individual
Funds, 2-Fund Portfolios, and 3-Fund Portfolios

Description

Integrates calc_metrics, calc_metrics_2funds, and calc_metrics_3funds into a single func-
tion, so you can compare strategies of varying complexities.

Usage

calc_metrics_123(
gains = NULL,
metrics = c("mean", "sd"),
tickers = NULL,
...,
step = 1,
prices = NULL,
benchmark = "SPY"

)

Arguments

gains Data frame with a date variable named Date and one column of gains for each
fund.

metrics Character vector specifying metrics to calculate. See ?calc_metrics for choices.

tickers List where each element is a character vector of ticker symbols for a particular
fund combination, e.g. list("BRK-B", c("SPY", "TLT"). Each set can contain
1-3 funds.

... Arguments to pass along with tickers to load_gains.

step Numeric value specifying fund allocation increments.

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

calc_metrics_2funds 7

Value

Data frame with performance metrics for each portfolio at each allocation.

Examples

Not run:
Calculate CAGR vs. max drawdown for BRK-B, SPY/TLT, and VWEHX/VBLTX/VFINX
df <- calc_metrics_123(

tickers = list("BRK-B", c("SPY", "TLT"), c("VWEHX", "VBLTX", "VFINX")),
metrics = c("cagr", "mdd")

)
head(df)

To plot, just pipe into plot_metrics_123
df %>%

plot_metrics_123()

Or bypass calc_metrics_123 altogether
plot_metrics_123(

formula = cagr ~ mdd,
tickers = list("BRK-B", c("SPY", "TLT"), c("VWEHX", "VBLTX", "VFINX"))

)

End(Not run)

calc_metrics_2funds Calculate Performance Metrics for 2-Fund Portfolios with Varying Al-
locations

Description

Useful for assessing the characteristics of 2-fund portfolios.

Usage

calc_metrics_2funds(
gains = NULL,
metrics = c("mean", "sd"),
tickers = NULL,
...,
prices = NULL,
benchmark = "SPY",
ref.tickers = NULL

)

8 calc_metrics_3funds

Arguments

gains Data frame with a date variable named Date and one column of gains for each
fund.

metrics Character vector specifying metrics to calculate. See ?calc_metrics for choices.

tickers Character vector of ticker symbols, where the first two are are a 2-fund pair, the
next two are another, and so on.

... Arguments to pass along with tickers to load_gains.

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

ref.tickers Character vector of ticker symbols to include.

Value

Data frame with performance metrics for each portfolio at each allocation.

Examples

Not run:
Calculate CAGR and max drawdown for UPRO/VBLTX
df <- calc_metrics_2funds(

metrics = c("cagr", "mdd"),
tickers = c("UPRO", "VBLTX")

)
head(df)

To plot, just pipe into plot_metrics_2funds
df %>%

plot_metrics_2funds()

Or bypass calc_metrics_2funds altogether
plot_metrics_2funds(

formula = cagr ~ mdd,
tickers = c("UPRO", "VBLTX")

)

End(Not run)

calc_metrics_3funds Calculate Performance Metrics for 3-Fund Portfolios with Varying Al-
locations

calc_metrics_3funds 9

Description

Useful for assessing the characteristics of 3-fund portfolios.

Usage

calc_metrics_3funds(
gains = NULL,
metrics = c("mean", "sd"),
tickers = NULL,
...,
step = 1,
prices = NULL,
benchmark = "SPY",
ref.tickers = NULL

)

Arguments

gains Data frame with a date variable named Date and one column of gains for each
fund.

metrics Character vector specifying metrics to calculate. See ?calc_metrics for choices.

tickers Character vector of ticker symbols, where the first three are are a 3-fund set, the
next three are another, and so on.

... Arguments to pass along with tickers to load_gains.

step Numeric value specifying fund allocation increments.

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

ref.tickers Character vector of ticker symbols to include.

Value

Data frame with performance metrics for each portfolio at each allocation.

Examples

Not run:
Calculate CAGR and max drawdown for UPRO/VBLTX/VWEHX
df <- calc_metrics_3funds(metrics = c("cagr", "mdd"), tickers = c("UPRO", "VBLTX", "VWEHX"))
head(df)

To plot, just pipe into plot_metrics_3funds
df %>%

plot_metrics_3funds()

Or bypass calc_metrics_3funds altogether
plot_metrics_3funds(formula = cagr ~ mdd, tickers = c("UPRO", "VBLTX", "VWEHX"))

10 calc_metrics_overtime

End(Not run)

calc_metrics_overtime Calculate Performance Metrics over Time

Description

Useful for assessing how one or two performance metrics vary over time, for one or several funds.
Supports fixed-width rolling windows, fixed-width disjoint windows, and disjoint windows on per-
month or per-year basis.

Usage

calc_metrics_overtime(
gains = NULL,
metrics = c("mean", "sd"),
tickers = NULL,
...,
type = "hop.year",
minimum.n = 3,
prices = NULL,
benchmark = "SPY"

)

Arguments

gains Data frame with one column of gains for each investment and a date variable
named Date.

metrics Character vector specifying metrics to calculate. See ?calc_metrics for choices.
tickers Character vector of ticker symbols that Yahoo! Finance recognizes, if you want

to download data on the fly.
... Arguments to pass along with tickers to load_gains.
type Character string or vector specifying type of calculation. Choices are (1) "roll.n"

where n is a positive integer; (2) "hop.n" where n is a positive integer; (3)
"hop.month"; (4) "hop.year"; and (5) vector of break-point dates, e.g. c("2019-01-01",
"2019-06-01") for 3 periods. The "roll" and "hop" options correspond to
rolling and disjoint windows, respectively.

minimum.n Integer value specifying the minimum number of observations per period, e.g. if
you want to exclude short partial months at the beginning or end of the analysis
period.

prices Data frame with a date variable named Date and one column of prices for each
investment.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

contango_hedged 11

Value

Data frame with performance metrics for each investment.

Examples

Not run:
Calculate annual CAGR's, MDD's, and Sharpe ratios for FANG stocks
calc_metrics_overtime(

tickers = c("FB", "AAPL", "NFLX", "GOOG"),
metrics = c("cagr", "mdd", "sharpe"),
type = "hop.year"

)

End(Not run)

contango_hedged Backtest a Hedged Contango-Based Volatility Trading Strategy

Description

Implements the following strategy: Each day, hold XIV/SPXU (weighted for zero beta) if contango
> xiv.spxu.cutpoint, hold VXX/UPRO (weighted for zero beta) if contango < vxx.upro.cutpoint,
and hold cash otherwise. Perhaps not very useful since XIV closed on Feb. 20, 2018.

Usage

contango_hedged(
contango,
xiv.spxu.gains = NULL,
vxx.upro.gains = NULL,
xiv.spxu.cutpoint = 6.36,
vxx.upro.cutpoint = 5.45,
xiv.allocation = 0.46,
vxx.allocation = 0.46,
xiv.beta = NULL,
vxx.beta = NULL,
initial = 10000

)

Arguments

contango Numeric vector of contango values at the end of each trading day.

xiv.spxu.gains 2-column numeric matrix with gains for XIV and SPXU. Should have the same
number of rows as contango and be date-shifted one value to the right. For
example, the first row should have the XIV and SPXU gains for the day AFTER
the first contango value.

12 contango_hedged

vxx.upro.gains 2-column numeric matrix with gains for VXX and UPRO. Should have the same
number of rows as contango and be date-shifted one value to the right. For
example, the first row should have the VXX and UPRO gains for the day AFTER
the first contango value.

xiv.spxu.cutpoint

Numeric value giving the contango cutpoint for XIV/SPXU position. For exam-
ple, if xiv.spxu.cutpoint = 5, XIV/SPXU will be held whenever contango is
greater than 5%.

vxx.upro.cutpoint

Numeric value giving the contango cutpoint for VXX/UPRO position. For ex-
ample, if vxx.upro.cutpoint = -5, VXX/UPRO will be held whenever con-
tango is less than -5%.

xiv.allocation Numeric value specifying XIV allocation for XIV/SPXU position. For example,
if set to 0.46, 46% is allocated to XIV and 54% to SPXU when contango >
xiv.spxu.cutpoint.

vxx.allocation Numeric value specifying VXX allocation for VXX/UPRO position. For exam-
ple, if set to 0.46, 46% is allocated to VXX and 54% to UPRO when contango
< vxx.upro.cutpoint.

xiv.beta Numeric value specifying XIV’s beta. If specified, the function figures out what
xiv.allocation needs to be for zero-beta XIV/SPXU positions. For example,
if set to 3.5, then 46.2% XIV/53.8% SPXU achieves zero beta.

vxx.beta Numeric value indicating VXX’s beta. If specified, the function figures out what
vxx.allocation needs to be for zero-beta VXX/UPRO positions. For example,
if set to -3.5, then 46.2% VXX/53.8% UPRO achieves zero beta.

initial Numeric value giving the initial value of the portfolio.

Details

You can find historical contango values from The Intelligent Investor Blog. You can click the first
link at http://investing.kuchita.com/2012/06/28/xiv-data-and-pricing-model-since-vix-futures-available-2004/
to download a zip file containing an Excel spreadsheet. Then, you will need to calculate whatever
version of "contango" you prefer. I typically define contango as what percent higher the second-
month VIX futures are acompared to the first-month futures, i.e. dividing the "2nd mth" column by
the "1st mth" column, subtracting 1, and then multiplying by 100.

To load daily gains for XIV, SPXU, VXX, and UPRO, you can use load_gains, which uses the
quantmod package to load data from Yahoo! Finance. You will have to specify the from and to
inputs to match the date range for your contango values.

Value

List containing:

1. Character vector named holdings indicating what fund was held each day (XIV/SPXU,
VXX/UPRO, or cash).

2. Numeric vector named port.gains giving the portfolio gain for each day, which will be 0 for
days that cash was held and the weighted XIV/SPXU or VXX/UPRO gain for days that one
of those positions was held.

http://investing.kuchita.com/2012/06/28/xiv-data-and-pricing-model-since-vix-futures-available-2004/

contango_simple 13

3. Numeric vector named port.balances giving the portfolio balance each day.

4. Numeric value named trades giving the total number of trades executed.

contango_simple Backtest a Simple Contango-Based Volatility Trading Strategy

Description

Simple strategy: Each day, hold XIV if contango > xiv.cutpoint, hold VXX if contango <
vxx.cutpoint, and hold cash otherwise. Perhaps not very useful since XIV closed on Feb. 20,
2018.

Usage

contango_simple(
contango,
xiv.gains = NULL,
vxx.gains = NULL,
xiv.cutpoint = 0,
vxx.cutpoint = -Inf,
initial = 10000

)

Arguments

contango Numeric vector of contango values at the end of each trading day.

xiv.gains Numeric vector of gains for XIV. Should be same length as contango and date-
shifted one value to the right. For example, the first value of xiv.gains should
be the XIV gain for the day AFTER the first contango value.

vxx.gains Numeric vector of gains for VXX. Should be same length as contango and date-
shifted one value to the right. For example, the first value of vxx.gains should
be the VXX gain for the day AFTER the first contango value.

xiv.cutpoint Numeric value giving the contango cutpoint for XIV, in percent.

vxx.cutpoint Numeric value giving the contango cutpoint for VXX, in percent.

initial Numeric value giving the initial value of the portfolio.

Details

You can find historical contango values from The Intelligent Investor Blog. You can click the first
link at http://investing.kuchita.com/2012/06/28/xiv-data-and-pricing-model-since-vix-futures-available-2004/
to download a zip file containing an Excel spreadsheet. Then, you will need to calculate whatever
version of "contango" you prefer. I typically define contango as what percent higher the second-
month VIX futures are acompared to the first-month futures, i.e. dividing the "2nd mth" column by
the "1st mth" column, subtracting 1, and then multiplying by 100.

I think the most common approach for contango-based volatility strategies is holding XIV (inverse
volatility) when contango is above some value (e.g. 0%, 5%, or 10%), and holding cash otherwise.

http://investing.kuchita.com/2012/06/28/xiv-data-and-pricing-model-since-vix-futures-available-2004/

14 convert_gain

You can do that with this function by leaving vxx.cutpoint as -Inf. However, you may also want
to hold VXX (volatility) when contango is below some value (e.g. 0%, -5%, -10%), also known as
"backwardation". You can implement an XIV-only, VXX-only, or XIV and VXX strategy with this
function.

To load daily gains for XIV and/or VXX, you can use load_gains, which uses the quantmod
package to load data from Yahoo! Finance. You will have to specify the from and to inputs to
match the date range for your contango values.

Value

List containing:

1. Character vector named holdings indicating what fund was held each day (XIV, VXX, or
cash).

2. Numeric vector named port.gains giving the portfolio gain for each day, which will be 0 for
days that cash was held and the XIV or VXX gain for days that XIV or VXX was held.

3. Numeric vector named port.balances giving the portfolio balance each day.

4. Numeric value named trades giving the total number of trades executed.

convert_gain Convert Gain from One Time Interval to Another

Description

For example, you can use this function to figure out that an 8% gain over 70 trading days corre-
sponds to 31.9% annualized.

Usage

convert_gain(gain, units.in = 1, units.out = 1)

Arguments

gain Numeric vector specifying each gain to convert, e.g. 0.005 for 0.5%.

units.in Numeric value specifying the time period you want to convert from.

units.out Numeric value specifying the time period you want to convert to.

Value

Numeric vector.

cum_metric 15

Examples

Calculate annualized gain for an 8% gain over a 70-day period
convert_gain(gain = 0.08, units.in = 70, units.out = 252)

Calculate the annual growth rate of a fund that gains 0.02% per day
convert_gain(gain = 0.0002, units.in = 1, units.out = 252)

Calculate the annual growth rate of a fund that gains 1% per week
convert_gain(gain = 0.01, units.in = 1, units.out = 52)

You invest in AAPL and gain 0.5% in 17 business days. Express as a 5-year
growth rate.
convert_gain(gain = 0.005, units.in = 17, units.out = 252 * 5)

Your portfolio has tripled in a 13-year period. Calculate your average
annual gain.
convert_gain(gain = 2, units.in = 13, units.out = 1)

cum_metric Calculate Cumulative Performance Metrics

Description

Mainly a helper function for plot_metrics_overtime. Work in progress.

Usage

cum_metric(gains, metric = "mean", units.year = 252, benchmark.gains = NULL)

Arguments

gains Numeric vector.

metric Character string.

units.year Integer value.

benchmark.gains

Numeric vector.

Value

Numeric vector.

16 diffs

daily_yearly Convert Daily Gain to X-year Gain

Description

For example, you can use this function to calculate that an investment that gains 0.1% each day
would gain approximately 28.5% in a year (252 trading days).

Usage

daily_yearly(gain, years = 1)

Arguments

gain Numeric vector specifying each gain to convert, e.g. 0.001 for 0.1%.

years Numeric value.

Value

Numeric value or vector.

Examples

Calculate annual gain for an investment that gains 0.1% per day
daily_yearly(gain = 0.001)

Calculate 5-year gains corresponding to various daily gains
daily_yearly(gain = seq(0, 0.001, 0.0001), years = 5)

diffs Lagged Differences (Alternate Implementation)

Description

Calculates differences between subsequent (or lagged) elements of a vector. Very similar to diff,
but written in C++.

Usage

diffs(x, lag = 1L)

fang 17

Arguments

x Numeric vector.

lag Numeric value (e.g. 2 for differences between 1st and 3rd element, 2nd and 4th,
...).

Value

Numeric vector.

Examples

Generate 1 million values from Poisson(3) distribution
x <- rpois(100000, 3)

Calculate vector of differences between subsequent values
y <- diffs(x)

Could get same result from base R function diff
z <- diff(x)
all.equal(y, z)

But diffs is faster
benchmark(diffs(x), diff(x), replications = 100)

fang Ticker Symbols for FANG Stocks (Facebook Apple, Netflix, Google)

Description

Ticker Symbols for FANG Stocks (Facebook Apple, Netflix, Google)

gains_prices Convert Sequence of Gains to Sequence of Prices

Description

Converts sequence of gains and initial balance to sequence of prices for one or more investments.

Usage

gains_prices(gains, initial = 10000, date1 = NULL)

18 gains_rate

Arguments

gains Numeric vector of gains for one investment, or data frame with one column for
each investment and an optional Date variable.

initial Numeric value.

date1 Date to use for initial price.

Value

Numeric vector or data frame.

Examples

Simulate daily gains over a 5-year period
set.seed(123)
gains <- rnorm(n = 252 * 5, mean = 0.001, sd = 0.02)

Plot balance over time if initial balance is $10,000
prices <- gains_prices(gains)
plot(prices)

gains_rate Calculate Growth Rate from Sequence of Gains

Description

The formula is simply: prod(gains + 1) - 1. If units.out is specified, then it converts to x-unit
growth rate.

Usage

gains_rate(gains, units.out = NULL)

Arguments

gains Data frame with one column of gains for each investment (can be a numeric
vector if there is only one).

units.out Numeric value specifying the number of units for growth rate calculation, if you
want something other than total growth. For annualized growth rate, set to 252
if gains has daily gains, 12 if gains has monthly gains, etc.

Value

Numeric vector.

get_sp500_tickers 19

Examples

Create vector of daily gains for a hypothetical stock
daily.gains <- c(-0.02, -0.01, 0.01, 0.02, 0.01)

Overall growth is 0.95%
gains_rate(daily.gains)

Average daily growth is 0.19%
gains_rate(daily.gains, 1)

Corresponds to 61.0% annual growth
gains_rate(daily.gains, 252)

get_sp500_tickers Get S&P 500 Ticker Symbols as on a Particular Date

Description

Scrapes ticker symbols from the Wikipedia Revision history https://en.wikipedia.org/wiki/
List_of_S%26P_500_companies. Of course, the data may be imperfect.

Usage

get_sp500_tickers(date = Sys.Date())

Arguments

date Date (or character vector that can be coerced).

Value

Character vector.

Examples

Not run:
S&P 500 tickers as of today
head(get_sp500_tickers())

S&P 500 tickers at the beginning of 2019
head(get_sp500_tickers("2019-01-01"))

End(Not run)

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

20 largest_etfs

highyield_etfs High-Yield ETFs from ETFdb.com

Description

High-Yield ETFs from ETFdb.com

Source

https://etfdb.com/etfdb-category/high-yield-bonds/

label_metric Convert Label back to Performance Metric

Description

Mainly a helper function.

Usage

label_metric(label)

Arguments

label Character string.

Value

Character string.

largest_etfs Largest 100 Market Cap ETFs (as of 3/2/18) and Inception Dates

Description

Largest 100 Market Cap ETFs (as of 3/2/18) and Inception Dates

Source

http://etfdb.com/compare/market-cap/

https://etfdb.com/etfdb-category/high-yield-bonds/
http://etfdb.com/compare/market-cap/

load_gains 21

load_gains Download Historical Gains

Description

Downloads historical gains for specified tickers from Yahoo! Finance, with various options. Relies
heavily on the quantmod package.

Usage

load_gains(
tickers,
intercepts = NULL,
slopes = NULL,
from = "1950-01-01",
to = Sys.Date(),
time.scale = "daily",
preto.days = NULL,
prefrom.days = NULL,
mutual.lifetimes = TRUE,
mutual.start = mutual.lifetimes,
mutual.end = mutual.lifetimes,
drop.anyNA = FALSE

)

Arguments

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, or "^CASH"
for cash.

intercepts Numeric vector of values to add to daily gains for each fund.

slopes Numeric vector of values to multiply daily gains for each fund by. Slopes are
multiplied prior to adding intercepts.

from Date or character string, e.g. "2015-01-15".

to Date or character string, e.g. "2018-12-31".

time.scale Character string. Choices are "daily", "monthly", and "yearly".

preto.days Numeric value. If specified, function returns gains for preto.days trading days
prior to to. For example, to load the most recent 50 daily gains, leave to and
time.scale as the defaults and set preto.days = 50.

prefrom.days Numeric value. If specified, function returns gains for prefrom.days trading
days prior to from. Useful when you want to test a trading strategy starting on a
particular date, but the strategy requires data leading up to that date (e.g. trailing
beta).

mutual.lifetimes

Logical value for whether to start on the first day and end on the last day of the
funds’ mutual lifetimes (within from and to).

22 load_prices

mutual.start Logical value for whether to start on the first day of the funds’ mutual lifetimes.

mutual.end Logical value for whether to end on the last day of the funds’ mutual lifetimes.

drop.anyNA Logical value for whether to drop dates on which prices are missing for any of
the funds.

Value

Data frame with gains for each fund.

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

Examples

Not run:
Load gains for Netflix and Amazon over their mutual lifetimes
gains <- load_gains(c("NFLX", "AMZN"))

End(Not run)

load_prices Download Historical Prices

Description

Downloads historical prices for specified tickers from Yahoo! Finance, with various options. Relies
heavily on the quantmod package.

Usage

load_prices(
tickers,
intercepts = NULL,
slopes = NULL,
from = "1950-01-01",
to = Sys.Date(),
time.scale = "daily",
preto.days = NULL,
prefrom.days = NULL,
initial = NULL,
mutual.lifetimes = TRUE,
mutual.start = mutual.lifetimes,
mutual.end = mutual.lifetimes,
anchor = FALSE,

https://CRAN.R-project.org/package=quantmod

load_prices 23

drop.anyNA = FALSE
)

Arguments

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, or "^CASH"
for cash.

intercepts Numeric vector of values to add to daily gains for each fund.

slopes Numeric vector of values to multiply daily gains for each fund by. Slopes are
multiplied prior to adding intercepts.

from Date or character string, e.g. "2015-01-15".

to Date or character string, e.g. "2018-12-31".

time.scale Character string. Choices are "daily", "monthly", and "yearly".

preto.days Numeric value. If specified, function returns prices for preto.days trading days
prior to to. For example, to load the most recent 50 closing prices, leave to and
time.scale as the defaults and set preto.days = 50.

prefrom.days Numeric value. If specified, function returns prices for prefrom.days trading
days prior to from. Useful when you want to test a trading strategy starting on a
particular date, but the strategy requires data leading up to that date (e.g. trailing
beta).

initial Numeric value specifying what value to scale initial prices to.

mutual.lifetimes

Logical value for whether to start on the first day and end on the last day of the
funds’ mutual lifetimes (within from and to).

mutual.start Logical value for whether to start on the first day of the funds’ mutual lifetimes.

mutual.end Logical value for whether to end on the last day of the funds’ mutual lifetimes.

anchor Logical value for whether to anchor the starting price for each fund to the price
of the longest-running fund on that day. Useful for visualizing funds’ entire
histories while also fairly comparing them over their mutual lifetimes. Only
used if mutual.start = FALSE.

drop.anyNA Logical value for whether to drop dates on which prices are missing for any of
the funds.

Value

Data frame with closing prices for each fund.

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

https://CRAN.R-project.org/package=quantmod

24 mdd

Examples

Not run:
Load prices for Netflix and Amazon over their mutual lifetimes
prices <- load_prices(c("NFLX", "AMZN"))

End(Not run)

mdd Maximum Drawdown

Description

Calculates maximum drawdown from vector of closing prices, highs and lows, or gains. Missing
values should be removed prior to calling this function.

Usage

mdd(prices = NULL, highs = NULL, lows = NULL, gains = NULL, indices = FALSE)

Arguments

prices Numeric vector of daily closing prices.

highs Numeric vector of daily high prices.

lows Numeric vector of daily low prices.

gains Data frame with one column of gains for each investment (extra non-numeric
columns are ignored), or numeric vector for one investment.

indices Logical value for whether to include indices for when the maximum drawdown
occurred.

Value

Numeric value, vector, or matrix depending on indices and whether there is 1 fund or several.

Examples

Not run:
Calculate MDD's for FANG stocks in 2018
prices <- load_prices(c("FB", "AAPL", "NFLX", "GOOG"), from = "2018-01-01",

to = "2018-12-31")
sapply(prices[-1], mdd)

End(Not run)

metric_choices 25

metric_choices Performance Metric Choices

Description

Performance Metric Choices

Source

Original

metric_decimals Get Number of Decimals for Performance Metric

Description

Mainly a helper function.

Usage

metric_decimals(metric)

Arguments

metric Character string.

Value

Character string.

metric_info Lookup Table for Performance Metrics

Description

Lookup Table for Performance Metrics

Source

Original

26 metric_title

metric_label Get Label for Performance Metric

Description

Mainly a helper function.

Usage

metric_label(metric)

Arguments

metric Character string.

Value

Character string.

metric_title Get Title for Performance Metric

Description

Mainly a helper function.

Usage

metric_title(metric)

Arguments

metric Character string.

Value

Character string.

metric_units 27

metric_units Get Units for Performance Metric

Description

Mainly a helper function.

Usage

metric_units(metric)

Arguments

metric Character string.

Value

Character string.

moving_mean Moving Averages

Description

Calculates moving averages or maximum moving average. For optimal speed, use integer = TRUE
if x is an integer vector and integer = FALSE otherwise.

Usage

moving_mean(x, window, integer = FALSE, max = FALSE)

Arguments

x Integer or numeric vector.

window Integer value specifying window length.

integer Logical value for whether x is an integer vector.

max Logical value for whether to return maximum moving average (as opposed to
vector of moving averages).

Value

Numeric value or vector depending on max.

28 pchanges

Examples

5-unit moving average for integer vector of length 10
x <- rpois(10, lambda = 3)
moving_mean(x, 5)

pchanges Lagged Proportion Changes

Description

Calculates proportion changes between subsequent (or lagged) elements of a vector.

Usage

pchanges(x, lag = 1L)

Arguments

x Numeric vector.

lag Numeric value (e.g. 2 for differences between 1st and 3rd element, 2nd and 4th,
...).

Value

Numeric vector.

Examples

Generate 10 values from N(0, 1)
x <- rnorm(10)

Calculate vector of proportion changes between subsequent values
(y <- pchanges(x))

Equivalent base R computation
len <- length(x)
p1 <- x[2: len]
p2 <- x[1: (len - 1)]
y2 <- p1 / p2 - 1
all.equal(y, y2)

pdiffs 29

pdiffs Lagged Proportion Differences

Description

Calculates proportion differences between subsequent (or lagged) elements of a vector.

Usage

pdiffs(x, lag = 1L)

Arguments

x Numeric vector.

lag Numeric value (e.g. 2 for differences between 1st and 3rd element, 2nd and 4th,
...).

Value

Numeric vector.

Examples

Generate 10 values from N(0, 1)
x <- rnorm(10)

Calculate vector of proportion differences between subsequent values
(y <- pdiffs(x))

Equivalent base R computation
len <- length(x)
p1 <- x[2: len]
p2 <- x[1: (len - 1)]
y2 <- (p1 - p2) / (0.5 * (p1 + p2))
all.equal(y, y2)

plot_gains Plot Gains for One Investment vs. Another

Description

Useful for visualizing how two investments behave relate to each other, or how several investments
behave relative to the same benchmark.

30 plot_gains

Usage

plot_gains(
formula = NULL,
...,
gains = NULL,
prices = NULL,
poly_order = 1,
plotly = FALSE,
title = NULL,
base_size = 16,
return = "plot"

)

Arguments

formula Formula, e.g. SSO + UPRO ~ SPY to plot gains for SSO and UPRO vs. SPY.

... Arguments to pass along with tickers to load_gains.

gains Data frame with one column of gains for each investment mentioned in formula.
If unspecified, function downloads historical gains internally.

prices Data frame with one column of prices for each investment mentioned in formula.

poly_order Numeric value specifying the polynomial order for linear regression, e.g. 1 for
simple linear regression or 2 for linear regression with first- and second-order
terms.

plotly Logical value for whether to convert the ggplot to a plotly object internally.
Note that legend displaying regression estimates will disappear if you choose
this option.

title Character string.

base_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

In addition to the graph, a list containing fitted linear regression models returned by lm for each
investment vs. the benchmark.

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

Examples

Not run:
Plot daily gains for SSO and UPRO vs. VFINX
p <- plot_gains(SSO + UPRO ~ VFINX)

https://CRAN.R-project.org/package=quantmod

plot_growth 31

End(Not run)

plot_growth Plot Investment Growth

Description

Useful for comparing the performance of several investments, over their full histories or mutual
lifetimes.

Usage

plot_growth(
prices = NULL,
tickers = NULL,
...,
gains = NULL,
initial = 10000,
plotly = FALSE,
title = "Growth Over Time",
base_size = 16,
tooltip_size = 20,
point_size = 1,
line_size = 1,
ticklabel_size = 8,
legend_position = "right",
return = "plot"

)

Arguments

prices Data frame with one column of prices for each investment and a date variable
named Date.

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, if you want
to download data on the fly.

... Arguments to pass along with tickers to load_gains.

gains Data frame with one column of gains for each investment and a date variable
named Date.

initial Numeric value specifying value to scale initial prices to.

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string.

base_size Numeric value to pass to theme_gray.

tooltip_size Numeric value to pass to style.

32 plot_metrics

point_size Numeric value to pass to geom_point.

line_size Numeric value to pass to geom_line.

ticklabel_size Numeric value to pass to theme.
legend_position

Character string to pass to theme.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

Depending on return and plotly, a ggplot/plotly object, a data frame with the source data, or a
list containing both.

A ggplot object.

Examples

Not run:
Plot growth of $10k in VFINX and BRK-B
plot_growth(tickers = c("VFINX", "BRK-B"))

End(Not run)

plot_metrics Plot One Performance Metric (Sorted Bar Plot) or One vs. Another
(Scatterplot) for a Group of Individual Funds

Description

Useful for visualizing the performance of individual funds. For 2- and 3-fund portfolios, see
plot_metrics_2funds and plot_metrics_3funds. To visualize any combination of single funds
and 2- and 3-fund portfolios, see link{plot_metrics_123}.

Usage

plot_metrics(
metrics = NULL,
formula = cagr ~ mdd,
tickers = NULL,
...,
gains = NULL,
prices = NULL,
benchmark = "SPY",
y.benchmark = benchmark,
x.benchmark = benchmark,
plotly = FALSE,

plot_metrics 33

title = NULL,
base_size = 16,
label_size = 5,
ticklabel_size = 8,
return = "plot"

)

Arguments

metrics "Long" data frame with Fund column and column for each metric you want to
plot. Typically the result of a prior call to calc_metrics.

formula Formula specifying what to plot, e.g. cagr ~ mdd for CAGR vs. MDD, cagr ~ .
for just CAGR, or . ~ mdd for just MDD. See ?calc_metrics for list of metrics
to choose from.

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, if you want
to download data on the fly.

... Arguments to pass along with tickers to load_gains.

gains Data frame with one column of gains for each investment and a date variable
named Date.

prices Data frame with one column of prices for each investment and a date variable
named Date.

benchmark Character string specifying which fund to use as a benchmark for metrics that
require one.

y.benchmark Character string specifying which fund to use as benchmark for y-axis metric.

x.benchmark Character string specifying which fund to use as benchmark for x-axis metric.

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string.

base_size Numeric value.

label_size Numeric value.

ticklabel_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

Depending on return, a ggplot, a data frame with the source data, or a list containing both.

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

https://CRAN.R-project.org/package=quantmod

34 plot_metrics_123

Examples

Not run:
Plot Sharpe ratio for FANG stocks
plot_metrics(formula = sharpe ~ ., tickers = fang)

Create previous plot in step-by-step process with pipes
fang %>%

load_gains() %>%
calc_metrics("sharpe") %>%
plot_metrics(. ~ sharpe)

Plot CAGR vs. max drawdown for SPY and BRK-B
plot_metrics(formula = cagr ~ mdd, tickers = c("SPY", "BRK-B"))

Create previous plot in step-by-step process with pipes
c("SPY", "BRK-B") %>%

load_gains() %>%
calc_metrics("cagr", "mdd") %>%
plot_metrics(cagr ~ mdd)

End(Not run)

plot_metrics_123 Plot One Performance Metric vs. Another for Any Number of Single
Funds, 2-Fund Portfolios, and 3-Fund Portfolios

Description

Integrates plot_metrics, plot_metrics_2funds, and plot_metrics_3funds into a single func-
tion, so you can visualize strategies of varying complexities on one figure.

Usage

plot_metrics_123(
metrics = NULL,
formula = mean ~ sd,
tickers = NULL,
...,
step = 1,
gains = NULL,
prices = NULL,
benchmark = "SPY",
y.benchmark = benchmark,
x.benchmark = benchmark,
plotly = FALSE,
title = NULL,

plot_metrics_123 35

base_size = 16,
label_size = 5,
return = "plot"

)

Arguments

metrics Data frame with Fund column and column for each metric you want to plot.
Typically the result of a prior call to calc_metrics_123.

formula Formula specifying what to plot, e.g. mean ~ sd, cagr ~ mdd, or sharpe ~ allocation.
See ?calc_metrics for list of metrics to choose from ("allocation" is an ex-
tra option here). If you specify metrics, default behavior is to use mean ~ sd
unless either is not available, in which case the first two performance metrics
that appear as columns in metrics are used.

tickers Character vector of ticker symbols, where the first three are are a three-fund set,
the next three are another, and so on.

... Arguments to pass along with tickers to load_gains.

step Numeric value specifying fund allocation increments.

gains Data frame with a date variable named Date and one column of gains for each
fund.

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark, y.benchmark, x.benchmark
Character string specifying which fund to use as benchmark for metrics (if you
request alpha, alpha.annualized, beta, or r.squared).

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string.

base_size Numeric value.

label_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Details

If you prefer to have complete control over the plotting, you can set return = "data" to just get the
source data.

Value

Depending on return, a ggplot object, a data frame, or a list containing both.

Examples

Not run:
Plot CAGR vs. max drawdown for BRK-B, SPY/TLT, and VWEHX/VBLTX/VFINX
plot_metrics_123(

36 plot_metrics_2funds

formula = cagr ~ mdd,
tickers = list("BRK-B", c("SPY", "TLT"), c("VWEHX", "VBLTX", "VFINX"))

)

End(Not run)

plot_metrics_2funds Plot One Performance Metric vs. Another for 2-Fund Portfolios

Description

Useful for visualizing the behavior of 2-fund portfolios, e.g. by plotting a measure of growth vs. a
measure of volatility.

Usage

plot_metrics_2funds(
metrics = NULL,
formula = mean ~ sd,
tickers = NULL,
...,
points = seq(0, 100, 10),
gains = NULL,
prices = NULL,
benchmark = "SPY",
y.benchmark = benchmark,
x.benchmark = benchmark,
ref.tickers = NULL,
plotly = FALSE,
title = NULL,
base_size = 16,
label_size = 5,
return = "plot"

)

Arguments

metrics Data frame with Fund column and column for each metric you want to plot.
Typically the result of a prior call to calc_metrics_2funds.

formula Formula specifying what to plot, e.g. mean ~ sd, cagr ~ mdd, or sharpe ~ allocation.
See ?calc_metrics for list of metrics to choose from ("allocation" is an ex-
tra option here). If you specify metrics, default behavior is to use mean ~ sd
unless either is not available, in which case the first two performance metrics
that appear as columns in metrics are used.

plot_metrics_2funds 37

tickers Character vector of ticker symbols, where the first two are are a two-fund pair,
the next two are another, and so on.

... Arguments to pass along with tickers to load_gains.

points Numeric vector specifying allocations to include as points on the curve. Set to
NULL for none (0 and 100 will still be included).

gains Data frame with a date variable named Date and one column of gains for each
fund.

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark, y.benchmark, x.benchmark
Character string specifying which fund to use as benchmark for metrics (if you
request alpha, alpha.annualized, beta, or r.squared).

ref.tickers Character vector of ticker symbols to include on the plot.

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string.

base_size Numeric value.

label_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

Depending on return, a ggplot object, a data frame, or a list containing both.

Examples

Not run:
Plot mean vs. SD for UPRO/VBLTX, and compare to SPY
plot_metrics_2funds(

formula = mean ~ sd,
tickers = c("UPRO", "VBLTX")

)

Plot CAGR vs. max drawdown for AAPL/GOOG and FB/TWTR
plot_metrics_2funds(

formula = cagr ~ mdd,
tickers = c("AAPL", "GOOG", "FB", "TWTR")

)

Plot Sharpe ratio vs. allocation for SPY/TLT
plot_metrics_2funds(

formula = sharpe ~ allocation,
tickers = c("SPY", "TLT")

)

End(Not run)

38 plot_metrics_3funds

plot_metrics_3funds Plot One Performance Metric vs. Another for 3-Fund Portfolios

Description

Useful for visualizing the behavior of one or several 3-fund portfolios, e.g. by plotting a measure
of growth vs. a measure of volatility.

Usage

plot_metrics_3funds(
metrics = NULL,
formula = mean ~ sd,
tickers = NULL,
...,
step = 2.5,
gains = NULL,
prices = NULL,
benchmark = "SPY",
y.benchmark = benchmark,
x.benchmark = benchmark,
ref.tickers = NULL,
plotly = FALSE,
title = NULL,
base_size = 16,
label_size = 5,
return = "plot"

)

Arguments

metrics Data frame with Fund column and column for each metric you want to plot.
Typically the result of a prior call to calc_metrics_3funds.

formula Formula specifying what to plot, e.g. mean ~ sd, cagr ~ mdd, or sharpe ~ allocation.
See ?calc_metrics for list of metrics to choose from ("allocation" is an ex-
tra option here). If you specify metrics, default behavior is to use mean ~ sd
unless either is not available, in which case the first two performance metrics
that appear as columns in metrics are used.

tickers Character vector of ticker symbols, where the first three are are a 3-fund set, the
next three are another, and so on.

... Arguments to pass along with tickers to load_gains.

step Numeric value specifying fund allocation increments.

gains Data frame with a date variable named Date and one column of gains for each
fund.

plot_metrics_overtime 39

prices Data frame with a date variable named Date and one column of prices for each
fund.

benchmark, y.benchmark, x.benchmark
Character string specifying which fund to use as benchmark for metrics (if you
request alpha, alpha.annualized, beta, or r.squared).

ref.tickers Character vector of ticker symbols to include on the graph.

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string.

base_size Numeric value.

label_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

Depending on return, a ggplot object, a data frame, or a list containing both.

Examples

Not run:
Plot mean vs. SD for UPRO/VBLTX/VWEHX
plot_metrics_3funds(

formula = mean ~ sd,
tickers = c("UPRO", "VBLTX", "VWEHX")

)

Plot CAGR vs. max drawdown for FB/AAPL/NFLX and SPY/TLT/JNK
plot_metrics_3funds(

formula = cagr ~ mdd,
tickers = c("FB", "AAPL", "NFLX", "SPY", "TLT", "JNK")

)

Plot Sharpe ratio vs. allocation for the same sets
plot_metrics_3funds(

formula = sharpe ~ allocation,
tickers = c("FB", "AAPL", "NFLX", "SPY", "TLT", "JNK")

)

End(Not run)

plot_metrics_overtime Plot One Performance Metric over Time or One vs. Another over Time

40 plot_metrics_overtime

Description

Useful for assessing how one or two performance metrics vary over time, for one or several funds.
Supports fixed-width rolling windows, fixed-width disjoint windows, and disjoint windows on per-
month or per-year basis.

Usage

plot_metrics_overtime(
metrics = NULL,
formula = cagr ~ .,
type = "hop.year",
minimum.n = 3,
tickers = NULL,
...,
gains = NULL,
prices = NULL,
benchmark = "SPY",
y.benchmark = benchmark,
x.benchmark = benchmark,
plotly = FALSE,
title = NULL,
base_size = 16,
return = "plot"

)

Arguments

metrics "Long" data frame with Fund column, Date column, and column for each metric
you want to plot. Typically the result of a prior call to calc_metrics_overtime.

formula Formula specifying what to plot, e.g. cagr ~ mdd for CAGR vs. MDD or cagr
~ . for CAGR over time. See ?calc_metrics for list of performance metrics to
choose from.

type Character string or vector specifying type of calculation. Choices are (1) "roll.n"
where n is a positive integer; (2) "hop.n" where n is a positive integer; (3)
"hop.month"; (4) "hop.year"; and (5) vector of break-point dates, e.g. c("2019-01-01",
"2019-06-01") for 3 periods. The "roll" and "hop" options correspond to
rolling and disjoint windows, respectively.

minimum.n Integer value specifying the minimum number of observations per period, e.g. if
you want to exclude short partial months at the beginning or end of the analysis
period.

tickers Character vector of ticker symbols that Yahoo! Finance recognizes, if you want
to download data on the fly.

... Arguments to pass along with tickers to load_gains.

gains Data frame with a date variable named Date and one column of gains for each
investment.

prices Data frame with a date variable named Date and one column of prices for each
investment.

plot_metrics_overtime 41

benchmark, y.benchmark, x.benchmark
Character string specifying which fund to use as benchmark for metrics (if you
request alpha, alpha.annualized, beta, or r.squared).

plotly Logical value for whether to convert the ggplot to a plotly object internally.

title Character string. Only really useful if you’re going to set plotly = TRUE, other-
wise you can change the title, axes, etc. afterwards.

base_size Numeric value.

return Character string specifying what to return. Choices are "plot", "data", and
"both".

Value

Depending on return, a ggplot, a data frame with the source data, or a list containing both.

Examples

Not run:
Plot net growth each year for BRK-B and SPY
plot_metrics_overtime(formula = growth ~ ., type = "hop.year", tickers = c("BRK-B", "SPY"))

Create previous plot in step-by-step process with pipes
c("BRK-B", "SPY") %>%

load_gains() %>%
calc_metrics_overtime("growth", type = "hop.year") %>%
plot_metrics_overtime(growth ~ .)

Plot betas from 100-day disjoint intervals for a 2x daily (SSO) and 3x
daily (UPRO) leveraged ETF
plot_metrics_overtime(formula = beta ~ ., type = "hop.100", tickers = c("SSO", "UPRO"))

Create previous plot in step-by-step process with pipes
c("SPY", "SSO", "UPRO") %>%

load_gains() %>%
calc_metrics_overtime(metrics = "beta", type = "hop.100") %>%
plot_metrics_overtime(formula = beta ~ .)

Plot 50-day rolling alpha vs. beta for SSO and UPRO during 2018
plot_metrics_overtime(

formula = alpha ~ beta,
type = "roll.50",
tickers = c("SSO", "UPRO"),
from = "2018-01-01", to = "2018-12-31"

)

Create previous plot in step-by-step process with pipes
c("SPY", "SSO", "UPRO") %>%

load_gains(from = "2018-01-01", to = "2018-12-31") %>%
calc_metrics_overtime(metrics = c("alpha", "beta"), type = "roll.50") %>%
plot_metrics_overtime(alpha ~ beta)

42 prices_gains

End(Not run)

prices_gains Convert Sequence of Prices to Sequence of Gains

Description

Converts sequence of prices to sequence of gains for one or more investments.

Usage

prices_gains(prices)

Arguments

prices Numeric vector of prices for one investment or data frame with one column for
each investment and an optional Date variable.

Value

Numeric vector or data frame.

Examples

Not run:
Load 2017 prices for Netflix and Amazon, and calculate growth of $10k
prices <- load_prices(c("NFLX", "AMZN"), initial = 1000)

Calculate gains
gains <- prices_gains(prices)

End(Not run)

prices_rate 43

prices_rate Calculate Growth Rate From a Vector of Prices

Description

The formula is simply: prices[length(prices)] / prices[1] - 1. If units.rate is specified,
then it converts to x-unit growth rate.

Usage

prices_rate(prices, units.rate = NULL)

Arguments

prices Numeric vector of prices or data frame with one column for each investment.

units.rate Numeric value specifying the number of units for growth rate calculation, if you
want something other than total growth. For annualized growth rate, set to 252
if prices has daily prices, 12 if prices has monthly prices, etc.

Value

Numeric value or vector.

Examples

Not run:
Load historical prices for SPY and TLT and then calculate growth rate
prices <- load_prices(tickers = c("SPY", "TLT"), mutual.start = TRUE)
prices_rate(prices)
Plot mean vs. SD for UPRO/VBLTX/VWEHX
plot_metrics_3funds(mean ~ sd, tickers = c("UPRO", "VBLTX", "VWEHX"))

Plot CAGR vs. MDD for FB/AAPL/NFLX and SPY/TLT/JNK
plot_metrics_3funds(cagr ~ mdd, tickers = c("FB", "AAPL", "NFLX", "SPY", "TLT", "JNK"))

Plot Sharpe ratio vs. allocation for the same sets
plot_metrics_3funds(sharpe ~ allocation, tickers = c("FB", "AAPL", "NFLX", "SPY", "TLT", "JNK"))

End(Not run)

Create vector of daily closing prices for a hypothetical stock
prices <- c(100.4, 98.7, 101.3, 101.0, 100.9)

Overall growth is 0.50%
prices_rate(prices)

Average daily growth is 0.12%
prices_rate(prices, 1)

44 ratios

Corresponds to 36.7% annualized growth
prices_rate(prices, 252)

ratios Ratios of Subsequent Elements in a Vector

Description

Calculates vector of ratios of a vector, i.e. ratio of x[2] to x[1], ratio of x[3] to x[2], and so forth.

Usage

ratios(x)

Arguments

x Numeric vector.

Value

Numeric vector.

Examples

Generate 10 values from N(0, 1)
x <- rnorm(10)

Calculate vector of ratios
(y <- ratios(x))

Slower base R computation
len <- length(x)
y2 <- x[2: len] / x[1: (len - 1)]
all.equal(y, y2)

rolling_metric 45

rolling_metric Calculate Moving-Window Performance Metrics

Description

Mainly a helper function for plot_metrics_overtime.

Usage

rolling_metric(
gains,
metric = "mean",
width = 50,
units.year = 252,
benchmark.gains = NULL

)

Arguments

gains Numeric vector.

metric Character string.

width Integer value.

units.year Integer value.
benchmark.gains

Numeric vector.

Value

Numeric vector.

rrr Risk-Return Ratio

Description

Calculates risk-return ratio, defined as growth rate divided by maximum drawdown.

Usage

rrr(prices = NULL, gains = NULL)

Arguments

prices Numeric vector of prices.

gains Numeric vector of gains.

46 sharpe

Value

Numeric value.

Examples

Simulate daily gains over a 5-year period
set.seed(123)
stock.gains <- rnorm(252 * 5, 0.0005, 0.01)

Convert to daily balances assuming an initial balance of $10,000
daily.balances <- gains_prices(stock.gains + 1)

Total return is about 1.23
daily.balances[length(daily.balances)] / daily.balances[1] - 1

Maximum drawdown is about 0.19
mdd(prices = daily.balances)

Ratio of these two is about 6.48
(daily.balances[length(daily.balances)] / daily.balances[1] - 1) /
mdd(daily.balances)

Easier to calculate using rrr
rrr(daily.balances)

sector_spdr_etfs Sector SPDR ETFs

Description

Sector SPDR ETFs

Source

http://www.sectorspdr.com/sectorspdr/sectors/performance

sharpe Sharpe Ratio

Description

Calculates Sharpe ratio from vector of gains or prices. The formula is: (mean(gains) - rf) /
sd(gains), where rf is some risk-free rate of return.

http://www.sectorspdr.com/sectorspdr/sectors/performance

sortino 47

Usage

sharpe(gains = NULL, prices = NULL, rf = 0)

Arguments

gains Numeric vector of gains.

prices Numeric vector of prices.

rf Numeric value.

Value

Numeric value.

Examples

Simulate daily gains over a 5-year period
set.seed(123)
stock.gains <- rnorm(252 * 5, 0.0005, 0.01)

Calculate Sharpe ratio using risk-free return of 0
sharpe(stock.gains)

sortino Sortino Ratio

Description

Calculates Sortino ratio from vector of gains or prices. The formula is: (mean(gains) - rf) /
sd(gains[gains < 0]), where rf is some risk-free rate of return.

Usage

sortino(gains = NULL, prices = NULL, rf = 0)

Arguments

gains Numeric vector of gains.

prices Numeric vector of prices.

rf Numeric value.

Value

Numeric value.

48 stocks

Examples

Simulate daily gains over a 5-year period
set.seed(123)
stock.gains <- rnorm(252 * 5, 0.0005, 0.01)

Calculate Sortino ratio using risk-free return of 0
sortino(stock.gains)

sp500_dates Lookup Table for Wikipedia S&P 500 Pages

Description

Lookup Table for Wikipedia S&P 500 Pages

Source

Wikipedia

stocks Stock Market Analysis

Description

Functions for analyzing and visualizing stock market data. Main features are loading and aligning
historical data, calculating performance metrics for individual funds or portfolios (e.g. annualized
growth, maximum drawdown, Sharpe/Sortino ratio), and creating graphs.

Details

Package: stocks
Type: Package
Version: 2.0.0
Date: 2020-07-14
License: GPL-3

See CRAN documentation for full list of functions and the GitHub page for an overview of the
package with some examples.

Author(s)

Dane R. Van Domelen
<vandomed@gmail.com>

https://cran.r-project.org/package=stocks
https://github.com/vandomed/stocks

targetall 49

References

Jeffrey A. Ryan and Joshua M. Ulrich (2019). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-15. https://CRAN.R-project.org/package=quantmod

targetall Backtest a Fixed-Allocation Trading Strategy

Description

Implements a trading strategy aimed at maintaining a fixed allocation to each of several funds,
rebalancing when the effective allocations deviate too far from the targets.

Usage

targetall(
tickers = NULL,
intercepts = NULL,
slopes = NULL,
...,
tickers.gains = NULL,
target.alls = NULL,
tol = 0.05,
rebalance.cost = 0,
initial = 10000

)

Arguments

tickers Character vector specifying 2 ticker symbols that Yahoo! Finance recognizes, if
you want to download data on the fly.

intercepts Numeric vector of values to add to daily gains for each fund.

slopes Numeric vector of values to multiply daily gains for each fund by. Slopes are
multiplied prior to adding intercepts.

... Arguments to pass along with tickers to load_gains.

tickers.gains Data frame with one column of gains for each investment and a date variable
named Date.

target.alls Numeric vector specifying target allocations to each fund. If unspecified, equal
allocations are used (e.g. 1/3, 1/3, 1/3 if there are 3 funds).

tol Numeric value indicating how far the effective allocations can drift away from
the targets before rebalancing.

rebalance.cost Numeric value specifying total cost of each rebalancing trade.

initial Numeric value specifying what value to scale initial prices to.

https://CRAN.R-project.org/package=quantmod

50 targetbeta_twofunds

Value

List containing:

1. Numeric matrix named fund.balances giving fund balances over time.

2. Numeric value named rebalance.count giving the number of rebalancing trades executed.

Examples

Not run:
Backtest equal-allocation UPRO/VBLTX/VWEHX strategy
port <- targetall(tickers = c("UPRO", "VBLTX", "VWEHX"))
plot(port$fund.balances[, "Portfolio"])

End(Not run)

targetbeta_twofunds Backtest a Two-Fund Strategy that Targets a Certain Beta

Description

Implements a two-fund strategy where allocations to each fund are adjusted to maintain some
user-specified portfolio beta. For example, you could back-test a zero-beta (i.e. market neutral)
UPRO/VBLTX strategy using this function.

Usage

targetbeta_twofunds(
tickers = NULL,
intercepts = NULL,
slopes = NULL,
...,
benchmark.ticker = NULL,
reference.tickers = NULL,
tickers.gains = NULL,
benchmark.gains = NULL,
reference.gains = NULL,
target.beta = 0,
tol = 0.15,
window.units = 50,
failure.method = "closer",
maxall.tol = tol - 0.05,
initial = 10000

)

targetbeta_twofunds 51

Arguments

tickers Character vector specifying 2 ticker symbols that Yahoo! Finance recognizes, if
you want to download data on the fly.

intercepts Numeric vector of values to add to daily gains for each fund.

slopes Numeric vector of values to multiply daily gains for each fund by. Slopes are
multiplied prior to adding intercepts.

... Arguments to pass along with tickers to load_gains.
benchmark.ticker

Character string specifying ticker symbol for benchmark index for calculating
beta. If unspecified, the first fund in tickers is used as the benchmark.

reference.tickers

Character vector of ticker symbols to include on graph as data points for com-
parative purposes.

tickers.gains Data frame with one column of gains for each investment and a date variable
named Date.

benchmark.gains

Numeric vector of gains for the benchmark index for calculating beta. If un-
specified, the first fund in tickers.gains is used as the benchmark.

reference.gains

Numeric vector or matrix of gains for funds to include on graph as data points
for comparative purposes.

target.beta Numeric value.

tol Numeric value specifying how far the effective portfolio beta has to deviate from
target.beta to trigger a rebalancing trade.

window.units Numeric value specifying the width of the trailing moving window used to esti-
mate each fund’s beta.

failure.method Character string or vector specifying method(s) to use when fund betas are such
that the target portfolio beta cannot be achieved. Choices are "cash", "fund1",
"fund2", "fund1.maxall", "fund2.maxall", "inverse1", "inverse2", and
"closer". See Details.

maxall.tol Numeric value specifying tolerance to use when implementing the "fund1.maxall"
or "fund2.maxall" failure method. To illustrate, if target.beta = 0, fund 1
has a current beta of 1, fund 2 has a current beta of 0.25, failure.method =
"fund2.maxall", and maxall.tol = 0.1, a trade will be triggered that results
in 40% fund 2 and 60% cash. The portfolio beta is 0.4 * 0.25 = 0.1. The reason
you might want maxall.tol to be less than tol is to avoid frequently triggering
another trade on the very next day, as fund 2’s beta changes a little and moves
the portfolio beta outside of [target.beta - tol, target.beta + tol].

initial Numeric value specifying what value to scale initial prices to.

Details

The general implementation is as follows. Beta for each of the two funds is estimated based on the
first window.units gains. Initial allocations are selected to achieve portfolio beta of target.beta.

52 targetbeta_twofunds

If that is not possible - for example, if target.beta = 0 and both funds have positive beta - then
the action taken depends on what method is selected through the failure.method input (details
below).

Assuming the target beta is attainable, the function moves over 1 day, and applies each fund’s gains
for that day. It then re-calculates each fund’s beta based on the window.units-width interval, and
determines the effective portfolio beta based on fund allocations and betas. If the effective beta is
outside of [target.beta - tol, target.beta + tol], a rebalancing trade is triggered. As before,
if the target beta cannot be achieved, certain actions are taken depending on the selected method.

When outside of a trade because the target beta could not be achieved, the function attempts to
rebalance each time it shifts over to a new day, regardless of the effective portfolio beta.

When failure.method = "cash", the entire portfolio balance is allocated to cash when the target
beta cannot be achieved.

When failure.method = "fund1" (or "fund2"), the entire portfolio balance is allocated to the first
(or second) fund when the target beta cannot be achieved.

When failure.method = "fund1.maxall" (or "fund2.maxall"), when the target beta cannot be
achieved, fund 1 (or fund 2) is combined with cash, with the fund 1 (fund 2) allocation as high as
possible while staying within maxall.tol of target.beta.

When failure.method = "inverse1" (or "inverse2"), an inverse version of the first (or second)
fund is used when the target beta cannot be achieved. In many cases where the target beta cannot
be achieved with the two funds, it can be achieved with an inverse version of one and the other. If
the target beta still cannot be achieved, the entire portfolio balance is allocated to cash.

When failure.method = "closer", the entire portfolio balance is allocated to whichever fund has
a beta closer to target.beta.

Value

For each method, a 4-element list containing:

1. Numeric matrix named fund.balances giving fund balances over time.

2. Numeric matrix named fund.betas giving fund betas over time.

3. Numeric vector named effective.betas giving effective portfolio beta over time.

4. Numeric value named trades giving the total number of trades executed.

Examples

Not run:
Backtest zero-beta UPRO/VBLTX strategy
beta0 <- targetbeta_twofunds(tickers = c("UPRO", "VBLTX"), target.beta = 0)
plot(beta0$fund.balances$Portfolio)

End(Not run)

ticker_dates 53

ticker_dates Get Yahoo! Finance Start/End Dates for Tickers

Description

Useful for figuring out a time period over which to compare several funds.

Usage

ticker_dates(tickers, from = "1950-01-01", to = Sys.Date())

Arguments

tickers Character vector with ticker symbols that Yahoo! Finance recognizes.

from Date or character string (e.g. "2015-01-15".

to Date or character string (e.g. "2016-01-30").

Value

Data frame with start and end dates for each fund.

Examples

Not run:
See what dates are available for AAPL and AMZN
ticker_dates(c("AAPL", "AMZN"))

End(Not run)

title_metric Convert Title back to Performance Metric

Description

For internal use only.

Usage

title_metric(title)

Arguments

title Character string.

54 vanguard_products

Value

Character string.

vanguard_etfs Vanguard ETF’s

Description

Vanguard ETF’s

Source

https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns

vanguard_funds Vanguard Mutual Funds

Description

Vanguard Mutual Funds

Source

https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns

vanguard_products Vanguard Products

Description

Vanguard Products

Source

https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns

https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns
https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns
https://investor.vanguard.com/mutual-funds/list#/mutual-funds/asset-class/month-end-returns

Index

beta_trailing50, 3

calc_metric, 4
calc_metrics, 4, 5, 33
calc_metrics_123, 6, 35
calc_metrics_2funds, 7, 36
calc_metrics_3funds, 8, 38
calc_metrics_overtime, 4, 10, 40
contango_hedged, 11
contango_simple, 13
convert_gain, 14
cum_metric, 15

daily_yearly, 16
diff, 16
diffs, 16

fang, 17

gains_prices, 17
gains_rate, 18
geom_line, 32
geom_point, 32
get_sp500_tickers, 19
ggplot, 30–33, 35, 37, 39, 41

highyield.etfs (highyield_etfs), 20
highyield_etfs, 20

label_metric, 20
largest.etfs (largest_etfs), 20
largest_etfs, 20
lm, 30
load_gains, 3, 5, 6, 8–10, 12, 14, 21, 30, 31,

33, 35, 37, 38, 40, 49, 51
load_prices, 22

mdd, 24
metric.choices (metric_choices), 25
metric.info (metric_info), 25
metric_choices, 25

metric_decimals, 25
metric_info, 25
metric_label, 26
metric_title, 26
metric_units, 27
moving_mean, 27

pchanges, 28
pdiffs, 29
plot_gains, 29
plot_growth, 31
plot_metrics, 32
plot_metrics_123, 34
plot_metrics_2funds, 36
plot_metrics_3funds, 38
plot_metrics_overtime, 15, 39, 45
plotly, 30–33, 35, 37, 39, 41
prices_gains, 42
prices_rate, 43

ratios, 44
rolling_metric, 45
rrr, 45

sector.spdr.etfs (sector_spdr_etfs), 46
sector_spdr_etfs, 46
sharpe, 46
sortino, 47
sp500.dates (sp500_dates), 48
sp500_dates, 48
stocks, 48
style, 31

targetall, 49
targetbeta_twofunds, 50
theme, 32
theme_gray, 31
ticker_dates, 53
title_metric, 53

vanguard.etfs (vanguard_etfs), 54

55

56 INDEX

vanguard.funds (vanguard_funds), 54
vanguard.products (vanguard_products),

54
vanguard_etfs, 54
vanguard_funds, 54
vanguard_products, 54

	beta_trailing50
	calc_metric
	calc_metrics
	calc_metrics_123
	calc_metrics_2funds
	calc_metrics_3funds
	calc_metrics_overtime
	contango_hedged
	contango_simple
	convert_gain
	cum_metric
	daily_yearly
	diffs
	fang
	gains_prices
	gains_rate
	get_sp500_tickers
	highyield_etfs
	label_metric
	largest_etfs
	load_gains
	load_prices
	mdd
	metric_choices
	metric_decimals
	metric_info
	metric_label
	metric_title
	metric_units
	moving_mean
	pchanges
	pdiffs
	plot_gains
	plot_growth
	plot_metrics
	plot_metrics_123
	plot_metrics_2funds
	plot_metrics_3funds
	plot_metrics_overtime
	prices_gains
	prices_rate
	ratios
	rolling_metric
	rrr
	sector_spdr_etfs
	sharpe
	sortino
	sp500_dates
	stocks
	targetall
	targetbeta_twofunds
	ticker_dates
	title_metric
	vanguard_etfs
	vanguard_funds
	vanguard_products
	Index

